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The paper deals with an extension of previous work on the radiation properties 
of turbulent flow formed on compliant surfaces. The effect of simple supports is 
shown to be acoustically equivalent to an extended dipole system of strength 
equal to the support stress. The dipole radiation is reduced by a transmission 
factor below that radiated into a uniform environment. A particular example 
is worked out in detail. That example deals with the case of a single point support 
on an otherwise homogeneous surface excited by boundary-layer turbulence. 

1. The dipole equivalent of simple supports 
The influence of surface vibration on the radiation from turbulent flow near a 

homogeneous plane surface has recently been treated by Ffowcs Williams (1965). 
There, it was shown that surface response did not introduce sources of high 
efficiency, and that any surface effect could be accounted for by a straight- 
forward reflexion coefficient for plane acoustic waves. The influence of simple 
supports can be treated in a similar way. Again, non-linear terms in surface 
response are neglected, as are the viscous terms. The equations that describe the 
radiation field are those given by Powell (1960). There are two complementary 
equations, one for a real flow with turbulence stress tensor qj distributed over 
the volume TI+, and one for a hypothetical image flow with a specular reflexion of 
the turbulence in the volume v-. 

The brackets [ 1, indicate that the integrals should be evaluated at retarded 
time, (t--r/cz,), r being the distance separating the source point y from the 
observer at x, and a, the speed of sound. n is the outward normal from the real 
flow through the plane bounding surface s. p(x, t )  is the pressure radiated to the 
point (x, t )  and comprises four distinct source terms. The quadrupoles in the real 
flow induce a pressure T+ while those in the image flow induce a pressure T-. 
Should the surface be rigid, surface sources would account for a pressure pr,  
while a pressure pv would be radiated by surface terms if the surface were 
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perfectly limp and could support no stress. More general surfaces radiate sound 
in a way that is determined by equation (1. l ) ,  so that the problem is reduced to 
one of relating the two pressuresp, andp, through some knowledge of the surface 
response. 

We now suppose that the previously considered homogeneous plane surface 
is supported by an inhomogeneous stress system induced by a distribution of 
simple supports. These stresses will be denoted by q, a positive q implying a force 
acting on unit area of the surface in the direction - n. The stresses are related to 
the response velocity vn, through the response equation 

P - q = _ l l ’ ( v n ) ,  (1.2) 

F being a collection of differential or integral operators representing a linear 
integro-differential equation with constant coefficients. The surface pressure is 
now eliminated from (1.1) by use of the response equation 

i a  ay 1 a [F(vn)IT. dY (1.3) 

This relation reduces the current problem, by analogy, to that of the unsupported 
homogeneous surface. This becomes clear when we regard the support stress q as 
the strength of a distribution of externally applied acoustic dipoles, whose total 
strength we do not expect to be generally zero. These external dipoles are 
essentially different from the remaining surface terms, representing real sources 
of radiation and not, in general, accounting for a reflexion property which is the 
sole role of the other terms. This point will become clear in what follows, but we 
anticipate it by combining the total effect of the applied stress fields into one 
term. That term represents the sum of the pressure induced by the turbulent flow 
and that induced by the support dipoles, a value we denote by S. As before, we 
have a field due to the real and image source systems 

S- is the pressure induced by the specular reflexion of the real source system that 
generates the pressure S+, the reflexion of the dipole term merely requiring 
a change of sign. 

Equations (1. l), (1.3) and (1.4) can be combined in a form that makes clear the 
analogy with the earlier problem : 

This system of equations is precisely that treated by Ffowcs Williams (1965) in 
considering the problem of turbulent flow formed on an unsupported homo- 
geneous surface. In  fact, the only change induced by the supports is that the 
turbulent sources are reinforced by surface dipoles so that S replaces T. Conch- 
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sions can therefore be based directly on that analysis. The most important point 
is that the surface integrals account for simple reflexion of the source system 8,. 
However, the reflexion coefficient changes with direction of radiation and 
frequency. The analysis is particularly simple for the distant radiation field, 
where p * ( x ,  w ) ,  the component of radiated pressure at frequency w,  is given by 
the sum of direct and reflected fields: 

S: and S? are the components of sound pressure radiated by the real and image 
source systems at frequency w, and R is the reflexion coefficient for plane acoustic 
waves at that frequency. 

The pressures S: and ST consist of a superposition of the fields induced by 
quadrupoles acoustically equivalent to the turbulent flow and dipoles whose 
strength density equals the supporting stresses. Equation (1.6) has an interesting 
special case when there is negligible turbulence so that both T+ and T- are zero. 
Then S: is entirely due to an externally applied stress and is its exact opposite, 
being the field of an image dipole. The radiated pressure is then given by 

~ * ( x , w )  = ( l -R)S*, .  (1.7) 

( 1  - R)  is familiar as the transmission coefficient for waves passing from the fluid 
into a region with impedance equal to the normal impedance of the surface. 
This result, that the radiation from an externally excited surface is equal to that 
induced by dipoles of strength density equal to the applied stresses multiplied 
by the transmission coefficient for plane acoustic waves, seems an obvious one 
but does not appear to be readily available in the literature. 

It is clear that if the supporting stresses were uniformly distributed over the 
plane their effect could be accounted for by a modified surface response equation. 
The previous conclusion that the radiation would be purely quadrupole would 
then be valid. It seems that it is essentially the inhomogeneous nature of the 
supports that induces the dipole component. If the plane surface were composed 
of several regions of locally homogeneous material, but material that differed 
from region to region, one could conclude from the foregoing analysis that within 
individual regions the effect of surface motion would be accounted for by the 
local reflexion coefficient and that the radiation would be quadrupole. However 
at the interfaces there would be discontinuities in the response equation that 
would account for dipole terms which must be more efficient radiators of sound. 
The situation is completely analogous to that treated by Maidanik (1962),  who 
showed how most of the sound radiated from a large finite plate appeared to 
emanate from the periphery of the plate. 

The total dipole strength is the net applied force and the most effective radia- 
tion results from the force being concentrated on to an area of typical dimension 
small in comparison with an acoustic wavelength. The concentrated point sup- 
port is then an important example in establishing an upper limit on the strength 
of the radiation field induced by a known supporting force. That example is 
considered below. 
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2. Point-supported surface under a turbulent boundary layer 
The simplest of the inhomogeneous support systems is that in which the stress 

distribution q is concentrated at one point. Let that point be the origin of 
co-ordinates and let the applied force have a value Q : 

This force induces a dipole radiation according to equations (1.4) and ( 1 4 ,  where 
the real and image fields become 

In the distant radiation field, the differentiation with respect to x, applies only 
to the retarded time so that the dipole term may be rewritten as 

1 sinOaQ 
4n-r a,, at * 

--- (2.3) 

sin 0 is written for - arpx,, 8 being the radiation angle measured from the 
surface. The spectral decomposition is achieved through Fourier transformation. 
We shall denote transformed quantities by an asterisk, p *  being the component 
of p a t  frequency w ,  TT the component of T ,  etc. 

p(x,t) = p*(x ,  w )  eiufdw. (2.4) s 
The particular case of equation (1.6) is then 

iw sin 8 
4n-a, r 

P*(x,o) = TT+RTT+[l-R]-----Q*. 

It is easy to verify that the dipole term is precisely that worked out by Maidanik 
& Kerwin (1966) to be the radiation from a point-driven plate, but its interpreta- 
tion as the sum of direct and reflected dipole fields seems to be new. A point of 
considerable interest is the question of how large the dipole field is in comparison 
with the sound radiated by the surrounding surface. To progress with that issue, 
the value of the externally applied force, Q, must first be found. 

Suppose the support to have some impedance zq, so that Q* is related to the 
velocity a t  the support point v:~, through the relation 

Q* = z~v,&. 

The applied force has modified the velocity at its point of application, from a 
value v,,, which would have occurred in an unsupported structure, to its current 
value vnn. The force is related to this velocity change through zp,  the point 
impedance of the structure, an impedance that includes any influence of fluid 
loading : 

Q * = - z ~ ( v &  - ~t). (2.7) 
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Combining this relation with equations (2 .5 )  and (2 .6 )  we obtain expressions for 
the applied force and radiated sound in terms of the velocity response of an 
unsupported structure : 

Q* = ZP * 
1 + (zp/zq) vn07 

P*(x,o) = T:+RTT+{l -R}- - -  V*nO. 
iw  sin 6’ x p x q  
4naor zp + zq (2-9) 

The influence of the support can now be interpreted as a wave-scattering process. 
Sound radiation from an unsupported surface occurs only from those spectral 
components that match both frequency and wave number of the distant acoustic 
wave. But, in this instance, components of response velocity at all wave numbers 
contribute to the term vzo, so that the supported structure acts like a sounding 
board. That is, energy is converted from a reactive to a radiative regime by a 
wave-scattering process. This feature destroys any significant correlation 
between the dipole and quadrupole terms making the mean square radiation the 
sum of the individual mean square values. The power spectral density of the 
radiated pressure field P*(x, w )  can then be expressed as the sum of that due to 
the combination of real and image quadrupoles T*,  and that due to the dipole 
which is proportional to the power spectral density of the response velocity in an 

~ 

unsupported panel, Vg : 

P*(x,w) = Vg. (2.10) 

Vg is simply related to the three-dimensional Fourier spectrum of the pressure 
field acting on a rigid surface through the surface and wave impedances x and z,, 
respectively. The rigid-surface pressure field a t  wave vector k and frequency w ,  
&(k, w ) ,  must balance both the structural response force, zv:(k, w ) ,  and the 
force induced by fluid motion, z,vz(k, w ) .  Therefore 

p%k, 0) = (2  + z,) v p ,  w ) ,  (2.11) 

where v:(k, w )  is the three-dimensional Fourier transform of the surface velocity. 
The three-dimensional spectral functions, which we denote P&(k, w )  and Vz(k, w ) ,  
are formed from the product of this equation with its complex conjugate 

P&(k,w) = I~+z,,1~Vz(k,w). (2.12) 

The frequency spectrum of the surface response velocity is simply the integral of 
the three-dimensional spectrum over all wave-number space so that Vg(w) is 
given by a straightforward integral, 

(2 .13)  

For a homogeneous structure the impedance function depends only on the 
magnitude of the wave vector so that a change of co-ordinates to a polar system 
is suggested. We let k be defined by (k, 4) and rewrite dk as kdkd4.  

(2.14) 
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In a highly resonant structure, the integral over wave number can be approxi- 
mated in a way that considerably simplifies the analysis. The approximation 
rests on the assumption that both the pressure spectrum and the real part of the 
impedance (z  + zw), (zR + z , )  (z, being necessarily real for radiating waves) 
remain fairly constant over the effective bandwidth of the ‘resonance peak’, 
a peak assumed to occur at wave number kp. In that event, the integration over 
wave number is straightforward : 

(2.15) 

Most turbulent flows of practical interest display convective features that are 
apparent in the spectrum function as a tendency for the energy to be concen- 
trated at the eddy passage frequency. This property can be important in the 
response problem and is best dealt with by re-expressing the pressure spectrum 
in terms of that measured by an observer in uniform motion with the most 
coherent eddy structure. That spectrum we shall denote by P&(k, w ) .  

P:s(k,w) = Pg(k ,w-k .U , ) .  (2.16) 

U, is the convection velocity, which we normalize with respect to the free-surface 
wave speed, cp .  I V,l = cp M .  Then, by setting the origin of q4 coincident with the 
direction of convection and noting that w = kpcp,  we can rewrite equation (2.15) 
in a form that displays the convective effects more clearly : 

At low flow velocities, particularly in underwater applications, interest centres 
on situations where the number M is negligible. Then it is convenient to assume 
that space and time variables are separable in the moving reference frame so that 

(2.18) 

ph is written for the R.M.S. pressure level active on a rigid boundary, Pz is the 
wave-number spectrum and P: is the moving axis frequency spectrum. Both 
these spectral functions are normalized to integrate to unity. 

Before going on to evaluate the integral a t  low values of M ,  it  is worth pointing 
out the equivalence that exists between this theory of vibration induced by 
convected pressure fields and that of aerodynamic sound generation by convected 
turbulence (Lighthill 1962; Ffowcs Williams 1963). In  the aerodynamic case, 
M is the Mach number of eddy convection, and radiation frequencies differ from 
those of the source by the Doppler factor (1 - M cos 9). It is apparent from 
(2.17) that this feature is also a property of the vibration problem and that 
we might expect an analogue of the Mach wave radiation at values of M in 
excess of unity. This is evident from the alignment that occurs whenever 
(1 - M cos q5) approaches zero of the dominant spectral component in the surface 
pressure field with the response frequencies, the spectrum P*, being chosen so 
that its maximum occurs at  zero frequency. Then, by analogy with the aero- 
dynamic problem, only the uniformly convected components induce response. 
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Consequently the response would be expected to be relatively intense for those 
waves radiating at the 'Mach angle' on account of the strong tendency to 
uniform convection of many pressure fields. The situation is illustrated quite 
effectively by assuming the moving-axis frequency spectrum to be a unit delta 
function. Then equation (2.17) can be evaluated to give the response velocity 
spectrum typical of structural excitation by high-speed flows where the convec- 
tion velocity exceeds the phase speed of free waves : 

(2.19) 

In underwater problems the low-speed situation is more relevant, where, from 
(2.17) and (2.18), 

(2.20) 

The integral over $4 is the correlation area A(kJ used by Ffowcs Williams & Lyon 
(1963), so that it is a previously estimated property of boundary-layer flows. The 
values for A(lc,) are illustrated in figure 1, 

2 n / 0 ' n P ~ ( k ( k p ,  $))a$ =A(lc,). (2.21) 

The response spectrum can now be given explicitly in terms of known features of 
the pressure field that acts on a rigid surface. The spectrum has the value derived 
for the flat plate by Ffowcs Williams & Lyon (1963) when z, and zp are appropri- 
ately chosen. The radiation from the simply supported surface can also be 
estimated by inserting the response spectrum in (2.10): 

W W )  = rP;p"wU) &P)l"R + z,>2,1, (2 .22 )  

Although this result could be used to evaluate the sound radiated from various 
flows and support structures, the general form is not very revealing of the im- 
portant role played by surface inhomogeneities. It is clear that, if the surface is 
supported on soft or resonant undamped mounts, so that zp approaches zero, 
there will be no additional radiation from the support. It is also clear that the 
support plays a minor role in high-impedance structures where the reflexion 
coefficient approaches unity. However, many practical instances occur where the 
reflexion coefficient is close to zero, as in the case in sonar dome construction, 
where optimum sound transmission is essential. That situation is illustrated 
below by an example in which the support impedance zg is infinite, the surface is 
assumed to be loss-free, and the flow is a fully developed turbulent boundary 
layer. The intensity of the radiation from the turbulence is identical with that 
from the image system which can be computed from a knowledge of the pressure 
field on the boundary surface. This has been done in an approximate form by 
Ffowcs Williams & Lyon (1963) with the result 

(2.24) 
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The notation is that already defined with the addition that Sl is the boundary- 
layer displacement thickness, h is the inverse acoustic wave number a,/w, and 
A is the area of the radiating surface. This estimate, when inserted in equation 
(2.23) yields an approximate expression for the total radiation from a turbulent 
boundary layer formed on a surface resting on a single rigid support : 
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FIGURE 1. Ffowcs Williams & Lyon's (1963) estimate of the equivalent 

correlation area A(&), defined by equation (2.21) of the text. 

The leading term in the brackets is that due to the free surface and the other 
represents the support. When this expression is evaluated for a typical under- 
water situation one finds that the support induces an intensity at 8 = 45" 
equivalent to that radiated by approximately 2 square metres of unsupported 
structure. This figure is worked out near the maximum value of A(&), which 
occurs at a frequency of 3.5 kcycles for 0.25 in. steel plate, and the boundary-layer 
displacement thickness is taken as 0.1 in. 

A more general result showing the area of free surface to which the radiation 
from the support is equivalent at a particular radiation angle is obtained by 
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equating the two terms within the brackets of (2.25). The value of A(kp)/6: 
has been taken as 10, that being an estimate of its upper limiting value as 
shown in figure 1. Then it is seen that a t  an angle t9 the radiation from a rigid 
support on a surface with high transmission factor cannot exceed that from an 
unsupported area equal to 
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